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a b s t r a c t

Secondary cooling control is the key factor for stabilizing and enhancing slab quality in continuous cast-
ing. In view of practical importance of critical boundary conditions in offline or online simulation and
control during continuous casting process, accurate estimation for heat transfer coefficient of secondary
cooling zone is of utmost significance. To optimize the cooling process and temperature behavior of
continuous casting slab, a novel method was presented to predict the heat transfer behavior in secondary
cooling process. This approach applies the particle swarm optimization (PSO) algorithm in conjunction
with the mathematical heat transfer model and the experimental temperature to determine the heat
transfer coefficient. Through verifying the validity and efficiency of the integrated method proposed,
the temperature variation of slab surface is more coincident with measured temperatures along the
casting direction. The calculation results confirm that the heat transfer coefficient could be estimated
precisely with measurement temperatures using PSO algorithm. The combined approach offers an
applicable technology for optimization of cooling strategy and solidifying process in continuous casting.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Continuous casting is currently the primary method of
producing steel slabs, billets and blooms. Heat transfer plays an
important role in productivity and quality of steel prior to rolling.
Various kinds of surface and internal quality defects originate from
improper cooling practices [1,2]. Accurate description of heat
transfer and reasonable control of secondary cooling process are
the basic requirements for high efficient continuous casting. For
the sake of competitiveness in manufacturing, there is a permanent
requirement of proper cooling strategies in the secondary cooling
areas to obtain excellent product quality.

Zone different casting speed are listed in Table 4. Many heat
transfer models have been developed and successfully used to
simulate steady state casting operations in online or offline mode.
In terms of process control, this means a necessity to maintain
operational parameters in a specific optimum range. Owing to
the complicated and economic reasons, it is not feasible to under-
take extensive experimental trials during the continuous casting
process to evaluate the influence of several operational parame-
ters. In this sense, the rapid development of better process control
and optimization is increasingly dependent on simulations per-
formed with heat transfer mathematical models and artificial intel-
ligence techniques [3–5].

Aiming to enhancing internal quality of casting slab, the accu-
rate prediction of surface temperature and solidifying state of
strands are obviously essential and strongly dependent on the
boundary conditions of heat flux, especially for the heat transfer
coefficient in each secondary cooling zone. In the present work,
this paper presents a mathematical heat transfer model combined
with the particle swarm optimization (PSO) to optimize the sec-
ondary cooling process. The heat transfer model is built and uses
a two-dimensional finite difference method to calculate the ther-
mal field and the solid shell profile. The PSO algorithm is applied
to find the optimal heat transfer coefficient in each secondary
cooling zone for the production of slabs with a better temperature
dropping trend. Improved calculation conditions of the new
configuration are compared to the original one. The accuracy and
efficiency of the integrated approach is investigated further.

2. Description of the mathematical model

The numerical modeling of the strand has been developed to
track a transverse slice of a steel slab as it moves down along the
casting direction. Model is based on the finite difference method.
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Table 1
Overview of each secondary cooling zone for the caster.

Secondary
cooling zone

1# 2# 3# 4# 5# 6# 7# 8#

Distance from
meniscus (m)

0.8 1.04 1.97 3.34 5.26 9.10 12.94 19.65

Length (m) 0.24 0.93 1.37 1.92 3.84 3.84 6.71 9.69

X. Wang et al. / International Journal of Heat and Mass Transfer 93 (2016) 250–256 251
In view of the geometric features of the slab, the temperature pro-
file only needed to be calculated for one quarter of slab cross-
section as shown in Fig. 1.

2.1. Assumptions

The following assumptions were made in the formulating of the
model:

(a) Heat transfer along the direction of slab width and thickness
is recognized as axial symmetry and that along the slab
withdrawal direction is neglected. Therefore, the mathemat-
ical model is translated into a two-dimensional unsteady
heat conduction equation.

(b) The latent heat of steel solidification is converted into an
equivalent specific heat capacity in the mushy zone (semiso-
lid zone).

(c) The density of steel is constant, but the specific heat capacity
and the heat conductivity of steel are the temperature-
dependent properties.

(d) The fluid flow is expected to affect thermal field via
enhanced heat transfer and then an effective thermal con-
ductivity is employed in the liquid core and mushy zone of
slab.

2.2. Governing equations

According to above assumptions, a two-dimensional heat trans-
fer equation is available as follows:
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where q is steel density, kg m�3; c is specific heat of steel, J kg�1 -
K�1; T represents the instaneous slab temperature, K; t is time, s;
k is thermal conductivity, Wm�1 K�1; x and y are coordinates, m,
and represent the direction of slab width and slab thickness; S is
energy source term, Wm�3.

The equivalent specific heat method is adopted to calculate the
latent heat of steel, which transforms the influence of latent heat to
specific heat. The formula is expressed as follows proposed by
Thomas [2]:

Ceff ¼ Cp þ LH
Tl � Ts

ðTs 6 T 6 TlÞ ð2Þ

where Ceff represents equivalent specific heat, J kg�1 K�1; Cp repre-
sents the specific heat of steel; LH is the latent heat of solidification,
Fig. 1. Schematic diagram of the calculation domain.
J kg; Tl represents the liquidus temperature of steel, K; Ts represents
the solidus temperature of steel, K.

In the temperature between Tl and Ts, the convection effect of
the mushy zone kinetics on heat transfer is not known. The ther-
mal conductivity is given as [3]:

keff ¼ ksolð1þ 6f lÞ ð3Þ
where ksol is thermal conductivity of solid steel, f l is the liquid
fraction.

2.3. Initial and boundary conditions

At the beginning of the continuous casting (t = 0), the slice tem-
perature profile at the meniscus is equal to the pouring
temperature:

Tðx; y; tÞjt¼0 ¼ Tcast ð4Þ
where Tcast is the casting temperature, K, which is measured in
tundish.

The boundary conditions are as follows:
In the mold, an average heat flux as a function of the casting

time is utilized and the boundary heat flux is described by Savage
and Pritchard [1]:

Q ¼ A� B
ffiffiffiffiffiffiffiffiffiffi
z

Vcast

r
ð5Þ

where Q represents the mold heat flux, Wm2; A and B are the coef-
ficients relative to heat flux in the mold; z is the distance from
meniscus, m; Vcast is casting speed, m min.

The heat transfer coefficient in the spray zones is usually related
to spray water flow rates, and can be calculated through the for-
mula (6) [4]:

hspray ¼ 1570:0w0:55½1:0� 0:0075ðTspray � 273:15Þ�
a

ð6Þ

where w is the spray cooling flux, L m�2 s�1; Tspray represents the
temperature of the spray cooling water, K; a is a machine depen-
dent calibration factor; hspray represents the spray cooling heat
transfer coefficient, W m�2 K�1.

A Newtonian heat-transfer coefficient is then used to compute
radiation heat transfer between the slab and surrounding environ-
ment as described by Hardin et al. [5]:
Table 2
Casting conditions and thermo-physical properties.

Item Symbol Value Unit

Slab section W � N 2450 � 320 mm �mm
Effective mold length Lmold 800 mm
Carbon content C% 0.12 %
Pouring temperature Tcast 1544.0 �C
Steel liquidus temperature Tl 1514.4 �C
Steel solidus temperature Ts 1453.3 �C
Casting speed Vcast 0.65 m/min
Steel density q 7200 kg/m3

Latent heat Lh 2.7�E5 J/kg
Spray water temperature Tspray 30.0 �C
Ambient temperature Tambient 35.0 �C



Table 3
Major components of steel grades.

[%C] [%Si] [%Mn] [%P] [%S] [%Cr] [%Al] [%N]

0.12 0.3 1.5 0.024 0.01 0.08 0.04 0.0048

Table 4
Water volume of each secondary cooling zone at a casting speed of 0.65 m/min.

Secondary cooling zone 1# 2# 3# 4# 5# 6# 7# 8#

Water volume (L/min) 182 368 245 47 50 35 61 85
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hrad ¼ erðT2
surface þ T2

ambientÞðTsurface þ TambientÞ ð7Þ
where e is the emissivity of slab surface; r is the Stefan–Boltzmann
constant, 5.6684 � 10�8 Wm�2 K�4; Tsurface represents the slab sur-
face temperature, K; Tambient represents the ambient temperature, K.

2.4. Experimental conditions

Based on the equations mentioned above, a heat transfer
calculation model was developed with finite difference method
(FDM).The model is used to predict the temperature and shell
thickness distributions in a slab continuous caster. The bow-type
caster is used to produce 220/320 mm thick slab in a width of
1800–2700 mm. The corresponding highest casting speed of the
two kinds of sections is 1.2 mmin�1 and 0.8 mmin�1, respectively.
The caster radius is 10.75 m and the metallurgical length is
28.83 m. Effective mold length is 800 mm. The caster has 8
secondary cooling zones, and the distance below the meniscus
and the length of each secondary cooling zone are given in Table 1.
The principal simulation parameters and thermo-physical proper-
ties are shown in Tables 2 and 3. Here, # means the zone numbers
of each secondary cooling zone.

To investigate the declining trend of the slab surface tempera-
ture, the centerline temperature of broader face on slab surface is
continuously detected by applying non-contact infrared tempera-
ture sensors, at the 4#, 5#, 6#, 7# and 8# zone exits. To reduce the
influence of vapor and oxide layer, the maximal value was
extracted as the measured results during the stable casting state.
The water volume of each secondary cooling zone and the mea-
sured temperature on slab surface at each measuring points under
a casting speed of 0.65 mmin�1 are listed in Tables 4 and 5.

3. Optimization for heat transfer coefficient

Usually, the heat transfer coefficient could be estimated from
the conventional empirical formula (6) proposed by Nozaki [4].
However, the uncertain heat transfer coefficients have been
severely affected by the hot temperature on slab surface, spraying
nozzle, cooling length, water volume, nozzle status and so on. It is
of importance for determination of the heat transfer coefficient
Table 5
Comparison of heat transfer calculation results between original and optimized by PSO al

Secondary
cooling zone

Water volume
(L/min)

Measured
temperature (�C)

Results of formula (6)

hspray (W/m2 K) Calcula
temper

4# 47 965.2 82.5 1021.6
5# 50 957.3 58.3 999.2
6# 35 941.9 47.9 975.1
7# 61 915.5 47.8 927.2
8# 85 890.7 46.9 916.1
RMS
under certain conditions in real casting process. Commonly, the
direct heat conduction problems consist of determining the tem-
perature distribution of the heated medium when the boundary
and initial conditions, heat source, thermo-physical properties
and geometric parameters are known. In contrast, the inverse heat
conduction problems consider the identification of boundary or
initial conditions, heat source, thermo-physical properties or geo-
metric parameters by using the temperature measurements
obtained at some specific locations in the medium. Using temper-
ature measurements to determine boundary conditions is a com-
mon inverse heat conduction problem.

In the previous work, the model of inverse heat transfer
problem (IHTP) was proposed to inversely simulate the heat
transfer coefficients from the measured temperatures in a steel
plant [6]. However, it was well known that the IHTP models were
often regarded as the ill-posed problem because their solution did
not satisfy the general requirements of existence, uniqueness and
stability under small changes to the input data. In other words,
their solutions need huge iterations, more time consuming, even
unable to find convergence solutions and very sensitive to the
measured data with measurement errors, measurement location
and initial situations and so on. To overcome the limitations of
IHTP models, this work propose an intelligent learning algorithms
to the modeling for convenient estimation of the heat transfer
coefficients.

3.1. Principle of the particle swarm optimization algorithm

Particle swarm optimization (PSO) is a high performance algo-
rithm created as an alternative to genetic algorithm. The algorithm
is an adaptive and robust parameter searching technique based on
the conceptual model of bird foraging [7]. It is indeed a population-
based stochastic algorithmwhich belongs to the evolutionary com-
putation (EC) techniques. The main difference between the PSO
and EC algorithms is that the PSO algorithm stores information
about both its position and its velocity (change in position). How-
ever, the PSO finds the optimum value more quickly than tradi-
tional evolutionary algorithm. It is due to the fact that PSO uses a
combination of local and global searches with the sharing evolu-
tionary information among the individual particles.

In a PSO system with M particles, each individual is treated as a
volume-less particle in the n-dimensional search space, with the
position vector and velocity vector of particle i at the kth iteration.
For the PSO algorithm, the searching procedure based on this con-
cept can be described by:

vkþ1
i ¼ w � vk

i þ c1r1ðpk
i � xki Þ þ c2r2ðpk

g � xki Þ ð8Þ

xkþ1
i ¼ xki þ vkþ1

i ð9Þ
xi ¼ fxi1; xi2; . . . ; xingT is the position of the ith particle.

pi ¼ fpi1; pi2; . . . ; pingT represents the best solution (fitness) of
the ith particle has achieved so far (pbest); pg ¼ fpg1; pg2; . . . ; pgngT
gorithm.

PSO algorithm optimized

ted
ature (�C)

Error (�C) hspray (W/m2 K) Calculated
temperature (�C)

Error (�C)

56.4 129.0 963.3 �1.9
41.9 82.9 953.2 �4.1
33.2 61.0 943.0 1.1
11.7 52.2 910.6 �4.9
25.4 63.0 890.4 �0.3
37.1 3.0



Fig. 2. Flowchart of the optimization process.
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represents the overall best location obtained so far by all particles

in the population (gbest). v i ¼ fv i1;v i2; . . . ; v ingTexpresses the
velocity of the ith particle in the range of j � vmax

i ;vmax
i j. vmax

i

determines the resolution, or fitness, with which regions between
the present position and target position are searched. n is the
dimensions (number of optimization variables) of each particle.
k is the number of iterations. i = 1, 2, . . .,M,M is the particle swarm
size of PSO.

where, w is the inertia factor. The constants c1 and c2 represent
are the acceleration coefficient that pull each particle toward pbest
and gbest positions. According to past experience, vmax

i is often set
at 10–50% of the dynamic range of the variable on each dimension,
and w, c1, c2 are often set to 0.8, 2, and 2, respectively [8,9]. r1 and
r2 are uniform random variables in the range [0,1], are that pull
each particle toward the local and the global best positions.
3.2. Design of fitness function

For an optimization problem, a proper fitness function plays a
very important role in finding the optimum solution. In this work,
problems in estimating unknown heat transfer coefficients are
solved by minimizing the objective function, which is the root
mean square (RMS) between the calculated and measured temper-
atures of slab surface at each secondary cooling zone. Thus, the
fitness function can be defined as:

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
j¼1

ðT j
C � T j

MÞ
2

vuut ð10Þ

where, Ti
C represents calculated value of the slab temperature and

Ti
M is the measured value of the slab temperature. Combining with

the later part of plant trial, Ti here represents the surface center
temperature at the exits of 4th, 5th, 6th, 7th and 8th zone. N is
the number of measured position, in other words, N is the number
of optimization variables and equal to the particle’s dimensions (n).
Obviously, the task of this study is to estimate the heat transfer
coefficient from measured surface temperatures of the 4#, 5#, 6#,
7# and 8# secondary cooling zone, therefore, the number of dimen-
sions (n) of each particle is 5.

3.3. Computation procedure for the PSO

Owing to the difficulty of performing measurement at the exit
of zones 1–3 in the secondary cooling zone, the values of heat
transfer coefficient in these zones are substituted by the results
of experiential formula [6]. Thus, the following contents of this
work apply the PSO to estimate the heat transfer coefficients at
zones 4–8. The computational steps of the PSO algorithm described
above are given as follows:

Initialize calculation parameters of heat transfer model;
Initialize particles with random positions (xi) and velocities

(vi);
Initialize pbest (pi), gbest (pg), inertia factor (w) and

acceleration coefficient (c1 and c2), k = 0;
While (k < kmax) or (f > fconv)
Calculate the temperature field of slab slice;
Update velocity of all particles according to Eq. (8);
Update position of all particles according to Eq. (9);
Apply velocity limits (vmax

i ) to velocities;
Evaluate all the particle’s fitness (fi), i = 1, 2, . . ., M according
to Eq. (8);
Update pbest (pi) and gbest (pg);
Update iterations k = k + 1;

End while
Output the final optimum gbest (pg) as the estimated heat

transfer coefficient.

At the beginning of PSO optimization, in order to give some idea on
the range of searching space for PSO, the upper and lower limits of
each dimension for all particles are set as 0.5 times and 2.0 times of
the original heat transfer coefficients at zones 4–8, which are
preliminarily determined through the experiential formula [6] and
corresponding water volume, as shown in Table 4. In the following
contents, PSO are adopted to optimize the cooling strategy of
continuous casting slab.

If the maximum number of generation set k is reached the given
number of iterations kmax or global best fitness f is lower than error
limit fconv, the optimization process would be ceased. According to
the given fitness functions, calculate the fitness in every iteration



Fig. 3. Fitness function variation of the PSO algorithm with different swarm sizes.
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combined with the results of heat transfer model during the opti-
mization process, to achieve the minimum value of cost function
through optimizing iteration, thus definite the rational heat trans-
fer coefficient in each secondary cooling zone. The implementation
of the standard PSO approach and heat transfer calculation for
optimizing process can be carried out according to the flowchart
presented in Fig. 2.
Fig. 4. Behavior of particle convergence at d
4. Results and discussion

4.1. Convergence of PSO algorithm

As a stochastic algorithm, whether or not to find a global
minimum depends mainly on how to update a population. In
theory, if a population can keep changing all the way, it has the
ability to find the global minimum but in an infinite time.
However, to make a stochastic algorithm efficient, strategies have
to be proposed to reduce the large amount of time. As the number
of iterations is fixed, the rapid convergence rate is necessary in
practice.

First of all, the influences of swarm size on the convergence of
fitness function for PSO are examined. Fig. 3 shows the optimiza-
tion curve of PSO during iterative search process with the different
swarm size. On the whole, in the earlier stage of search process of
function optimization, the fitness objective function converges fas-
ter, but the convergence speed reduces gradually as the increasing
iterations. It is clear to see that the fitness decreases more quickly
with the increase of the size of particle swarm in the same iteration
number. The swarm size of 50 shows faster convergence and smal-
ler fitness which is about 2.2 �C after 1000 iterations. It should be
noted that the computing time is measured for three population
sizes, such as 10, 20, and 50, after 1000 iterations. As a result,
increase in computing time is directly proportional to the swarm
size. Thus, considering the best fitness, computational time and
convergence speed of different swarm size synthetically, popula-
tion size M is suggested to be 20.
ifferent iterations of a swarm size of 20.



Fig. 5. Comparison between before and after optimization of surface temperature with the casting speed of 0.65 m/min.

Table 6
Comparison of heat transfer calculation results of shell thickness with experimental
results.

Outlet of
segment

Distance from
meniscus (m)

Measured shell
thickness (mm)

Calculated shell thickness
(mm)

Results of
formula (6)

PSO
algorithm
optimized

Seg. 7 16.93 122.5 119.7 121.7
Seg. 8 19.31 128.0 126.5 127.8
Seg. 9 21.70 133.5 132.3 133.9
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4.2. Estimation of heat transfer coefficients

20 Particles are deployed to search for the location of heat
transfer coefficients for the 4#, 5#, 6#, 7# and 8# secondary cooling
zone. To illustrate the movement of all particles, the convergence

behavior of h4
spray, h

5
spray and h6

spray is shown in Fig. 4. Figures show
the movement of particles for each iteration when searching the
actual location of heat transfer coefficients. The particles are ran-
domly distributed in the searching region for the first iteration.
After the 200 iterations, the particles are starting to make a cluster
and some particles have a relatively smaller fitness. However, the
cost functions of several particles are still greater than 5.0 �C. It
might because of the use of constant weight inertia that hinders
the movement of particles for higher iteration. On the subsequent
iterations, each particle tends to move towards the actual heat
transfer coefficients as shown in Fig. 4(c). In this condition, the
actual heat transfer coefficients have been detected by some parti-
cles that have the cost function as shown in Fig. 3. By further
increasing the iterations to 1000, the clustering becomes dense
which means that the heat transfer coefficients have been
determined by almost all particles, as given in Fig. 4(d). The best
fitness of all particles is 3.0 �C, thus, the locations of the heat trans-

fer coefficients have been identified, and optimum value of h4
spray,

h5
spray, h

6
spray, h

7
spray and h8

spray are 129.0, 82.9, 61.0, 52.2 and 63.0W/m2 K,
respectively, as shown in Table 5. It shows that the proposed
model can detect the heat transfer coefficients from the measured
temperature. In addition, it should be pointed that the optimized
heat transfer coefficients are usually larger than the values of
empirical formula estimation, which means that the actual cooling
effect is more intense than the effect of the formula calculation.
4.3. Heat transfer calculation results

The heat transfer coefficient of 4# � 8# cooling zone obtained
formula (6) and their optimized value optimized by PSO are input
into the heat transfer model, and the temperature distribution of
slab slice along the casting direction are calculated respectively.
The slab surface temperature profiles of wide face center before
and after optimization are shown in Fig. 5. The slab surface
temperature at each zone exit, the measured temperature and
the temperature deviations before and after PSO optimization are
compared as shown in Table 5. After PSO optimization, the slab
surface temperature is further closer to objective temperature,
the average temperature deviations between calculated slab sur-
face and measured temperature at each zone exit decreases from
33.7 �C to 2.5 �C. The root mean square between surface tempera-
ture and target temperature decreases from 37.1 �C to 3.0 �C. The
distributions of slab surface temperature are more rational, and
it effectively improves the slab surface temperature variations
along the casting direction which is beneficial to guarantee the
quality of slab and meet the rolling requirements.

The pin-shooting experiment was also conducted under the
same casting parameters, and the center points along the width
direction at 7th, 8th and 9th segment exits were chosen as shoot-
ing positions respectively. The sulfur print and macro etching test
are used in the experiment. The calculated results from heat trans-
fer calculation model and measured shell thickness at each detect-
ing position are given in Table 6. It can be seen that the calculated
shell thickness obtained from formula (6) is always lower than the
measured ones, and the maximal difference between them is
2.8 mm, which is located at the outlet of Seg. 7. The calculated shell
thickness optimized by PSO algorithm coincides well as the mea-
sured data and has a maximum deviation of 0.8 mm. On the whole,
the consistency between calculated results optimized by PSO
algorithm and measured solidified shell thickness demonstrates
the rationality and accuracy of the proposed model.
5. Conclusions

The optimum control of internal quality of the continuous cast-
ing slab is extremely dependent on the accurate selection of the
heat transfer coefficient. In order to overcome the limitations of
the method of inverse heat transfer problem, this paper presents
a novel secondary cooling strategy optimization method based
on particle swarm optimization. The PSO algorithm merged with
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heat transfer calculation model is implemented to optimize the
heat transfer coefficients of the secondary cooling zone from the
knowledge of temperature measurements obtained on the slab
surface. The results show that PSO algorithm converges fast and
possesses strong global search ability and higher optimization effi-
ciency. The root mean square between slab surface temperature
and measured temperature at each zone exit decreases from
37.1 �C to 3.0 �C, which effectively decreases the temperature devi-
ation as well as improves the slab surface temperature variation
along the casting direction. The comparison of calculated shell
thickness with pin-shooting experimental results also shows the
accuracy of the proposed model. The computing results confirm
that the PSO algorithm is remarkably good for accurate prediction
of the heat transfer coefficients, especially in the case of the inverse
estimation for boundary conditions in heat transfer calculation.
Application of this algorithm may be used to solve other similar
inverse problems, and it is also expected that the prediction accu-
racy of the proposed model will be further improved when more
data are available in the future work.
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